

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
[bookmark: _GoBack]Instruction plan : Certified C++ Developer (CCD) 
Course Overview
The Certified C++ Developer (CCD) course provides students with an in-depth understanding of C++ programming for high-performance and system-level applications. Covering advanced C++ concepts, memory management, multithreading, and object-oriented programming, this course is ideal for developers aiming to master C++ for complex software development in fields such as game development, embedded systems, and financial applications.

Course Objectives
By the end of this course, students will be able to:
1. Develop efficient and optimized applications using advanced C++ features.
2. Implement object-oriented programming principles and design patterns in C++.
3. Manage memory effectively, preventing leaks and optimizing performance.
4. Use templates, STL (Standard Template Library), and modern C++ libraries.
5. Implement concurrency and multithreading in C++ applications.
6. Utilize file I/O and integrate C++ with databases.
7. Debug, test, and optimize C++ applications for reliability and performance.

Module Breakdown with STAR Examples
Module 1: C++ Fundamentals and Advanced Syntax
· Objective: Strengthen understanding of core C++ syntax, control structures, and data types.
· Topics:
· Pointers, References, and Dynamic Memory
· Advanced Data Types (structs, enums, unions)
· Understanding const, static, and Preprocessor Directives
· Learning Activity: Write a program to handle complex data structures using pointers and dynamic memory allocation.
· Assignment: Create a custom stack data structure using pointers for memory management.
STAR Example:
· Situation: A software team needs an efficient stack implementation for their in-house algorithm.
· Task: Develop a stack structure in C++ that allows dynamic memory allocation and resizing.
· Action: Use pointers to manage memory for the stack, ensuring efficient push/pop operations.
· Result: Developed a flexible stack that performs reliably, optimizing memory and reducing overhead in large computations.

Module 2: Object-Oriented Programming and Design Patterns
· Objective: Master object-oriented programming (OOP) principles and implement design patterns in C++.
· Topics:
· Classes and Objects, Encapsulation, and Inheritance
· Polymorphism and Virtual Functions
· Key Design Patterns (Singleton, Factory, Observer)
· Learning Activity: Create a simple banking system that uses inheritance to model different account types.
· Assignment: Implement an inventory management system using OOP and the Factory design pattern.
STAR Example:
· Situation: An application requires different classes for managing a diverse inventory of items.
· Task: Design an inventory management system with item-specific classes that follow OOP principles.
· Action: Use inheritance to create a base class for items, implement derived classes for each item type, and use the Factory pattern to create objects.
· Result: Delivered a modular system that simplifies item creation and allows easy expansion for future item types.

Module 3: Memory Management and Optimization
· Objective: Develop skills for efficient memory management and avoid memory leaks in C++.
· Topics:
· Dynamic Memory Allocation with new and delete
· Smart Pointers (unique_ptr, shared_ptr, weak_ptr)
· Memory Leak Detection and Profiling
· Learning Activity: Implement a resource-intensive program and use smart pointers to manage memory.
· Assignment: Refactor an application to use smart pointers, ensuring there are no memory leaks.
STAR Example:
· Situation: A graphics application is experiencing memory leaks that lead to performance issues over time.
· Task: Refactor the application to eliminate memory leaks and improve stability.
· Action: Use unique_ptr and shared_ptr to manage resources dynamically, ensuring all memory is freed after use.
· Result: Improved application stability, reducing memory usage and preventing performance degradation over extended periods.

Module 4: Templates and Standard Template Library (STL)
· Objective: Use templates and the STL to create reusable, efficient data structures and algorithms.
· Topics:
· Function and Class Templates
· Core STL Components (Vectors, Lists, Maps, Sets)
· Algorithm Library and Iterators
· Learning Activity: Create a templated sorting function that works with various data types.
· Assignment: Develop a program that uses STL containers and algorithms to manage a large dataset.
STAR Example:
· Situation: A data processing system needs a generic sorting function that can handle multiple data types.
· Task: Create a reusable sorting function using templates.
· Action: Implement a templated function that sorts any data type and test it with different STL containers.
· Result: Developed a flexible sorting function that improves code reusability and reduces the need for specialized functions.

Module 5: Concurrency and Multithreading in C++
· Objective: Implement multithreaded applications in C++ to improve performance and responsiveness.
· Topics:
· Threads, Mutexes, and Locks
· Asynchronous Programming and std::async
· Thread Safety and Deadlock Prevention
· Learning Activity: Write a multithreaded program that calculates prime numbers concurrently.
· Assignment: Create a file processing application that uses threads to read and process data in parallel.
STAR Example:
· Situation: A financial application needs to process multiple transaction records simultaneously for efficiency.
· Task: Develop a multithreaded system to handle large volumes of transactions concurrently.
· Action: Use std::thread for parallel processing, ensuring thread safety with mutexes to prevent data corruption.
· Result: Reduced transaction processing time by 50%, achieving high throughput and maintaining data integrity.

Module 6: File I/O and Database Integration
· Objective: Manage file I/O operations and integrate C++ applications with databases.
· Topics:
· File Handling (Reading, Writing, Binary and Text Files)
· Error Handling in File I/O
· Database Integration with SQLite and MySQL
· Learning Activity: Implement a file-based logging system that logs errors and events to a file.
· Assignment: Create an application that stores and retrieves data from a SQLite database.
STAR Example:
· Situation: A logistics company requires an application to store shipment data in a local database for offline access.
· Task: Implement database integration to manage shipment records.
· Action: Use SQLite to create a database, connect using C++ database libraries, and implement CRUD operations for shipment data.
· Result: Delivered an efficient data storage solution, allowing offline access to shipment data with fast retrieval.

Module 7: Debugging, Testing, and Optimization
· Objective: Develop debugging, testing, and optimization skills to improve code reliability and performance.
· Topics:
· Debugging Tools (GDB, Valgrind)
· Unit Testing in C++ (Google Test)
· Profiling and Performance Optimization
· Learning Activity: Use GDB to debug a program with memory issues and optimize code performance.
· Assignment: Write unit tests for a data processing module and profile it to identify performance bottlenecks.
STAR Example:
· Situation: An AI company needs to optimize their C++ algorithm to reduce processing time for large datasets.
· Task: Identify and resolve bottlenecks in the data processing code.
· Action: Use a profiler to locate performance issues, optimize code by refactoring loops, and improve memory usage.
· Result: The algorithm’s processing time decreased by 40%, enhancing application responsiveness and supporting larger datasets.

Conclusion
The Certified C++ Developer (CCD) course prepares students to build robust and optimized applications, leveraging C++ for high-performance programming. With hands-on projects, STAR examples, and a focus on modern C++ standards, students gain skills to work on real-world applications that demand efficiency, scalability, and reliability.

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




